Digital

TRAVELLERS

SCRATCH TUTORIAL: LABYRINTH

DIGITAL CONTENT CREATION > 3.4 PROGRAMMING

TARGET GROUP AGE GROUP PROI;SIEEFCY FORMAT COPYRIGHT LANGUAGE

School drop outs, Children, Teenagers Level 2 Activity sheet Creative Commons English, French
Students (primary (BY-SA)

school), Students

(secondary school)

This is a tutorial on how to program a maze navigation game in Scratch.

General Objective Skillset building
Preparation time for less than 1 hour
facilitator

Competence area 3 - Digital content creation
Time needed to 0 - 1 hour

complete activity
(for learner)

Name of author Caroline Fohrer

Support material Computer with internet connection
needed for training

Resource originally French
created in

Digital-Travellers Version of 7 December 2020

Digital

TRAVELLERS

WORKSHOP DIRECTIONS

o Introduction

The goal of this tutorial is to illustrate and program a labyrinth. To beat a level, a player will need to
collect a key, which will allow the door to be opened to the next level. This will have to done while
avoiding an enemy trying to prevent the player from opening the door.

e Drawing the map

First we will design different levels for our labyrinth. On the bottom right of the creation screen, hover
over the backdrop tool and then click ‘Paint’.

- e R

Sew | B D S Drecticn

Choose one colour and draw a maze by using the ‘Rectangle’ tool (which will be walls/obstacles). For
example:

Digital-Travellers Version of 7 December 2020

Digital

TRAVELLERS

L

Add a square of another colour to represent the door to the next level:

L

The first level’s done! Repeat the previous steps, creating a new backdrop, to make the next level.
Rename the first level ‘Level 1’ and the second ‘Level 2’. Example:

Digital-Travellers Version of 7 December 2020

Digital
TRAVELLERS

"

Keep in mind that the starting point needs to be the same for every level. We will stop at two levels for
the tutorial. You can create more later if you wish.

e Adding a sprite

We will now create a sprite that we can move around the maze. For this, hover over the sprite icon on
near the bottom on the right of the screen and click on the paint tool. Draw your own sprite. Make sure
it’s small enough to pass through all the gaps!

Digital-Travellers Version of 7 December 2020

Digital
TRAVELLERS

00

In this example. the sprite is a yellow circle. Change its name to ‘Adventurer’ by clicking on the field we
have circled in the above image. We now need to make sure that the circle appears where we want it to
at the beginning of the game and not on a wall. Add the blocks ‘when the green flag is clicked’ and ‘go
to’ to the sprite’s script. Enter the desired values for X and Y in order that the sprite does not start on a
wall for either of the levels. To know what values to use, click at the starting point you want. The
coordinates will show up in the sprite details area. In other example, we have chosen x=-18 and y= -

113.

when

Which results in the following:

Digital-Travellers Version of 7 December 2020

Digital
TRAVELLERS

e Controlling the sprite

We will now animate the sprite so it can be moved using the direction arrows. Add the following to the
sprite’s script:

Digital-Travellers Version of 7 December 2020

Digital
TRAVELLERS

when clicked

forever

key uparrow v pressed? _ then

gotox: xposition y: yposition + o

if on edge, bounce

key downarrow v pressed? _ then

gotox: Xxposition y: yposition - o

if on edge, bounce

key rightarrow » pressed? then

gotox: xposition + o y: y position

if on edge, bounce

key leftarrow + pressed? _ then

gotox: xposition - o y: Yy position

if on edge, bounce

Digital-Travellers Version of 7 December 2020

Digital

TRAVELLERS

Code explanation: when the green flag is clicked, the sprite will appear at the designated coordinates.
The program will then verify constantly if one of the arrow keys is pressed. If the up arrow is pressed, the
sprite stays at its position on the x axis and moves +5 on the y axis. If the down arrow is pressed, the
sprite stays at its position on the x axis and moves -5 on the y axis. If the right arrow is pressed, the
sprite stays at its position on the y axis and moves +5 on the x axis. If the left arrow is pressed, the
sprite stays at its position on the y axis and moves -5 on the y axis. In any case, if the sprite touches the
edge, it bounces back. Click on the green flag to test the code.

e Colliding with the walls

The sprite can now move, but we can see it rrnccac tha walle whirh chanldn’t hanpen. We will now add
a condition which will mean that if a wal us position. Here are

touching color |

gotox: X position w v position +e

the blocks to be added to the up arrow:

Code explanation: if the sprite touches the colour chosen to designate the labyrinth (here blue), it keeps
its position on the x axis and moves -5 on the y axis. This gives the effect that its movement stops when
we move into a wall from below. We have therefore created the illusion that it has been blocked by the
wall. Add the same blocks for the other arrows while adjusting the x and y values so each time the
required movement reversal takes place. The result should be as follows:

Digital-Travellers Version of 7 December 2020

Digital

TRAVELLERS

key uparmmow * pressad? _ then

touching color 7 thian

gotox: xpositon y: yposiion - o
key downamow + pressed? | then

gotox: xposition y: yposition - o
T on eage, Dounce

if touching color ? _ then
gotox: xposition y: vy position + a
R
key rightarrow = pressed? = then
gotox: xposition + a y: vy position

touching color 7 then
gotox: xposition + e y: ¥ position
key left amow » pressed? then

gotox: xposition - o y: ¥ position

Digital-Travellers Version of 7 December 2020

Digital

TRAVELLERS

e Changing levels

We now need to program level changes. First, the finishing of the present level needs to be detectable.
Add the blocks below at the end of the program to detect when the sprite has touched the colour fo the
exit (here green), return the sprite to its initial position, and send a message ‘next level’ message. To
create the message, click on the dropdown menu arrow then on ‘broadcast’. This message will be sent to
all game elements. We will use it later. They should look like this:

Digital-Travellers Version of 7 December 2020

gital

TRAVELLERS

key upamow = pressed? then
gotox: xposiion y: yposition + o
if on adge, bounce

if touching color F

go to x: xposition y: yposition - o

key downamow * pressed? then
gotox: xposiion y: Yy position - o
if on adge, bounce

i touching color

gotox: xposition y: yposition -+ G

key right arrow » pressed? then
gotox: xXpositon + o ¥: ¥ position
if on edge, bounce

i touching color

go to x: = position + e y: ¥ position

key left arrow = pressed? then

pgotox: xposition - o y: ¥ position

if on adge, bounce

it touching color

o0 to x: X position + o y: v poaition

Digital-Travellers

Version of 7 December 2020

Digital

TRAVELLERS

Go to the backdrop’s script and write the following the code the changing of levels:

whan | recshen hexd Lsl =

switch backdop o backdopd »

Code explanation: when the green flag is clicked, the backdrop shows the first level. When it receives
the message ‘Next level’, the backdrop changes to the second level (taken from the list of costumes, so
the next level needs to be second in that list).

e Adding a key, door and enemy

The game now works but lacks interest. In order to improve what already exists, we will add a door

which will open using a key and will give access to level 2, as well as an enemy in the form of a bat. The
second level will look like this:

Add 3 sprites and give the name and the appearance of a key, a door, and a bat respectively. You can
draw them, choose them from the Scratch library or import them from your hard drive. We want the key

Digital-Travellers Version of 7 December 2020

Digital

TRAVELLERS

to appear only in level 2. Add to the following blocks to the key’s script:

Code explanation: when the game starts (i.e. when the green flag is clicked, the key hides itself. When

the next level appears (i.e. when the backdrop changes), the key appears. Next, we will make it so that
when the adventurer touches the key, it disappears and sends a message to the door to tell it to open.

Create the message ‘Open Door’. The script will therefore be as follows:

touching Adventurer + 7 _ then

broadcast Open Door =

Code explanation: when the green flag is clicked the sprite disappears. The program then checks
constantly whether the ‘Key’ is touching ‘Adventurer’. If this condition is verified, the message ‘Open
Door’ is sent to all elements, and ‘Key’ disappears. We have therefore creating the illusion that key has
been collected by the adventurer.

e Animating the door

The door must only appear in the second level and must only open when the adventurer collects the key.

Digital-Travellers Version of 7 December 2020

Digital

TRAVELLERS

Go to the door’s script. Add the same blocks as you did for the key, in order to hide the sprite when the
game starts and show it when the second level starts. Next, add blocks to hide the door when the
message ‘Open Door’ is received:

whon clicknd

when | recelve Open Dooe =

Unless the key is collected, the door should prevent the adventurer from passing. For this we will have to
manage the collision using a sensor in the adventurer’s script. Replace all the ‘if touching color’ blocks
with ‘if touching color or if touching Door’ blocks, as follows:

Digital-Travellers Version of 7 December 2020

Digital

TRAVELLERS

when clicked

Torewer
it key wupamow = pressed? then

gotox: xpositon . yposition + o

tor e |

touching color T or ftouching Door~ 7 then

gotox xposiion y: vy position o

I

ey down armow « pressad? then

potox: xposion y: vy position o
it an edga, bour-~
.
-

i touching color T or touching Door = 7

‘ e . pﬂslﬁm - W'uhon o -

—

key right amow = pressed? _ than

oo to X i position + o ¥: ¥ position

- ‘

] touching color 7 or ftouching Door~= 7

potox xpositon + a y: ¥ position

key left armow + pressed? | then

gotox: x positon o ¥ ¥ position

it touching color T or ftouching Door~ 7 then

potox: xposition + o ¥: ¥ position

it touching colar

Digital-Travellers Version of 7 December 2020

Now, each time the adventurer touches the door, its movement will be cancelled, as with the walls,
without us having to redo the whole code. Here is an example of how the door can be placed as an

o B
|

obstacle:

Gt

Animating the enemy

The bat must move around the labyrinth and try to bite the adventurer. It should only appear in the

Digital

TRAVELLERS

second level. Add the following to the bat’s script:

when backdrop switches to backdrop2 «

point in direction 9

next costume

if on edge, bounce

if touching Adventurer = 7 _ then

Digital-Travellers Version of 7 December 2020

Code explanation: when the green flag is clicked, the bat will disappear. When the backdrop changes to
‘backdrop?2’, the bat appears, sets its orientation and position according to those programmed, waits 0.2
seconds, changes its costume (giving the illusion it's flying), and moves all over the stage, rebounding if
it touches the edge. If it touches the adventurer, the game stops. These actions repeat indefinitely. The
instruction ‘next costume’ uses the default next costume that is included with the bat sprite. You can
switch these around by going to the ‘Costumes’ tab while the bat sprite is selected. Note: adjust the
positioning, orientation and number of movement steps according to your liking.

Bonus

Some ideas to improve the game:

®* Add more enemies

® Create more enemies

® Create potions that will shrink the protagonist so they can pass by areas it couldn’t access
previously

® Create doors of different colour that react to keys of the corresponding colour

* Add sound effects that play with different elements (door opening, defeat, changing level...)

Activity variant:

®* Draw levels on paper, then scan them and use them as backdrops.

Annex: Scratch coordinates

The x and y numbers that you see in the animation zone are coordinates. This area is a grid of 480 pixels

Digital

TRAVELLERS

({x:-240,¥50) {0, Y0

(x:240,v)

IIIJC-'I'I.I'I-IIJ'J

x

£l FoE

wide by 360 pixels high.

The centre is at (0,0). For x, the

more to the left we move, the smaller and more negative the numbers become. If we go below -240, we
leave the animation area. If we go to the right, the numbers get larger. If we pass 240 we leave the
screen. Fory, the further down we go, the smaller and more negative the numbers become. If we pass -
180, the object leaves the screen. If we go up, the numbers get larger. If we pass 180, we leave the

screen.

Digital-Travellers

Version of 7 December 2020

