
SCRATCH TUTORIAL : RACETRACK
DIGITAL CONTENT CREATION > 3.4 PROGRAMMING

TARGET GROUP AGE GROUP PROFICIENCY 
LEVEL FORMAT COPYRIGHT LANGUAGE

School drop outs, 
Students (primary 
school), Students 
(secondary school)

Children, Teenagers Level 2 Activity sheet Creative Commons 
(BY-SA)

English, French

This is a tutorial on how to make a simple racing game in Scratch.

General Objective Skillset building

Preparation time for 
facilitator

less than 1 hour

Competence area 3 - Digital content creation

Time needed to 
complete activity 
(for learner)

0 - 1 hour

Name of author Pierre Huguet

Support material 
needed for training

A computer with internet connection to access Scratch 
(https://scratch.mit.edu/) or with the app pre-installed.

Resource originally 
created in

French

Digital-Travellers Version of 7 December 2020 Page 1



WORKSHOP DIRECTIONS

1 Introductory steps
The goal of this activity is to have a car traverse a circuit. If it touches the edges of the track, it should 
return to the starting point. If it touches the finishing line, the player wins.

Designing the circuit and creating a new sprite

Create a new Scratch project and hover over the backdrop icon (bottom right of the creation 
screen), then click the paint icon.
Ensure you’re in bitmap mode. If you are in Vector mode, click ‘Convert to Bitmap’ under the 
illustration field.

Digital-Travellers Version of 7 December 2020 Page 2



Fill with green, then draw a black track using the paintbrush of maximum thickness. With a thinner 
line of a different colour, draw a straight line corresponding to the arrival line.

Digital-Travellers Version of 7 December 2020 Page 3



Delete the default cat sprite by click it and selecting the trashcan that appears over its selection 
pane. Create a new sprite representing a car but choosing an image from the library (click the cat-
shaped sprite icon near the bottom right of the screen). Choose something small rather than 
something long or pointed – it will be easier to program. Here we have chosen ‘Beetle’.
Rename the sprite ‘car’ by clicking on the name field.

Digital-Travellers Version of 7 December 2020 Page 4



Select two events (blocks) from which the program will react.

From the ‘Events’ selection, drag/drop the following to the programming area

A “when green flag is clicked’ block to start the game
A ‘space key is clicked’ to make the car go forward

Programming events to follow clicking the green flag – starting the game

Digital-Travellers Version of 7 December 2020 Page 5



Add a scaling block to set the initial size so that the size of the car is about one third that of the 
circuit :

When you click the green flag, the program executes its instruction and changes the car’s size to 
the given value.
Drag/drop the car with the cursor to place it in front of the finish line, without it touching this line 
nor the edges of the road. The sprite’s coordinates are displayed under the backdrop/playing field. 
Note the car’s coordinates when you place it (e.g. x = -136, y= 144).
We will now add a block that makes the car start at this position when the game starts, i.e. when 
we click on the green flag.
In the ‘motion’ category, we have the choice between the ‘go to x:__ y:__’ block and the ‘glide __ 
secs to x:__ y:__’ block to move or glide the car to the starting coordinates.
We will pick the second one.
Add the ‘glide __ secs to x:__ y:__’ block after the scaling block added previously, then enter the 
correct coordinates. They should be the same as the ones you noted before

Digital-Travellers Version of 7 December 2020 Page 6



If you have placed the car in the right position previously, the coordinates will be correct because 
new blocks automatically take on the coordinates of the most recent placement.
To test, place the car anywhere and click on the green flag. The car should return to the departure 
point. Note 1: avoid explaining in detail how the coordination system works — you only need to let 
participants know why the sprite goes to the right place. Note 2: you can also add an orientation 
block so that the car points in the direction of the track (this avoids the outcome of the car 
touching the edge due to being pointed to the wrong way).

Program events to follow ‘when space key pressed’ — moving the car

Add an orientation block pointing towards the cursor
Add a movement block (move 4 steps)

Note : If the space key is held after the execution of these first two blocks, they will be executed again 
since the space key is still pressed. Therefore, the car will move as long as the space key is pressed. We 
will modify this in a future version.

Test the game and discuss what to do next :

Return to the starting point if green is touched
Game ends when car touches blue (finishing line).

Digital-Travellers Version of 7 December 2020 Page 7



Complete the program to finish the car

Add a conditional control block: ‘if…then’
Insert a ‘touching colour’ test and choose the correct colour using the eyedropper tool
Inside the test block, duplicate the block that sends the car to the starting point. This block will 
only be executed if the test’s condition is met (i.e. if the car is touching green).
Duplicate the conditional block but use the finishing line’s colour.
Inside this, place the block that displays ‘I won’, then add ‘stop all’

Digital-Travellers Version of 7 December 2020 Page 8



2 Reviewing main concepts
Programming : we program to create something, like a game or application which is designed to 
be useful. The most successful games are those for which whose creators really consider the 
player’s experience and cater the game to that.
A program is constructed using sequences of blocks which are triggered by an event. The 
sequence of instructions corresponding to each event is called a script. Each sprite has its own 
script (for example in what we did today, we wrote the car’s script). Programs can have many 
sprites and corresponding scripts. It sometimes becomes difficult to remember them.

Digital-Travellers Version of 7 December 2020 Page 9



Digital-Travellers Version of 7 December 2020 Page 10



Block colours : these correspond to their functional categorie– Yellow for events which start 
block sequences, for example when the         player clicks on the green flag or presses the space 
key.
– Orange for the control blocks which can be used to modify how the           program runs. We used 
one of these above: the ‘if…then’ clauses for           which the internal instructions are only 
executed if the conditions are       verified/true
– Blue for motion blocks: movement and orientation.
– Purple for blocks that modify appearance, including size, colour and         text bubble
– Magenta for sounds which we will use later
– Light blue for sensors, such as the block that senses when a particular       colour is touched
– Green for calculations
– Orange for variables
– Red for custom blocks

The block shapes correspond to their character and the way they can be assembled. 
Most blocks have a notch on the top and underneath. We can lock them together in sequence 
and are executed in order from top to bottom.
Certain blocks are rounded on top meaning we cannot place anything before them. These 
start each script and usually correspond to events which take place outside the program, for 
example when the player clicks on the green flag. (We will see later that the program can 
also generate events using messages).
Certain block are flat on the bottom so nothing can be placed below them. This is the case 
with the ‘stop ___’ block.
There are also blocks that don’t have notches but are rounded or pointed on the edges. 
These blocks contain a value that we can insert into other blocks. for example control 
conditions.
Pointed blocks can only represent one of two values, true or false. They correspond to that 
we call Boolean variables. We usually use them in control blocks, for example, to determine 
whether a certain condition is met

Digital-Travellers Version of 7 December 2020 Page 11



Rounded block can contain numbers or text 
The values of rounded blocks can be a component in a calculation or test, for example:

containing a false value
containing the textual value ‘You lost’
containing the value 7
Image not found or type unknownImage not found or type unknown

3 Preparing the next steps
Discuss the game with participants and ways to improve it. As this will be there 1st their 2nd exercise on 
Scratch, you shouldn’t allow them to go to free creation time, but you can base the next lessons on 
improving the first version. We suggest the below ideas. We have categorised them in a suggested order 
of complexity.

Adding sounds
Counting lives (ending the game when the car runs out of lives)
Changing the car’s speed, accelerating and decelerating
Timing laps
Choosing and changing cars

Digital-Travellers Version of 7 December 2020 Page 12



Adding obstacles
Attaching cars, throwing objects
Collecting fuel, running out of fuel
Creating several levels

Digital-Travellers Version of 7 December 2020 Page 13


