Digital

TRAVELLERS

SCRATCH TUTORIAL : RACETRACK

DIGITAL CONTENT CREATION > 3.4 PROGRAMMING

TARGET GROUP AGE GROUP PROI;SIEEFCY FORMAT COPYRIGHT LANGUAGE

School drop outs, Children, Teenagers Level 2 Activity sheet Creative Commons English, French
Students (primary (BY-SA)

school), Students

(secondary school)

This is a tutorial on how to make a simple racing game in Scratch.

General Objective Skillset building
Preparation time for less than 1 hour
facilitator

Competence area 3 - Digital content creation
Time needed to 0 - 1 hour

complete activity
(for learner)

Name of author Pierre Huguet

Support material A computer with internet connection to access Scratch
needed for training (https://scratch.mit.edu/) or with the app pre-installed.
Resource originally French

created in

Digital-Travellers Version of 7 December 2020

Digital

TRAVELLERS

WORKSHOP DIRECTIONS

o Introductory steps

The goal of this activity is to have a car traverse a circuit. If it touches the edges of the track, it should
return to the starting point. If it touches the finishing line, the player wins.

Designing the circuit and creating a new sprite

® Create a new Scratch project and hover over the backdrop icon (bottom right of the creation
screen), then click the paint icon.

® Ensure you're in bitmap mode. If you are in Vector mode, click ‘Convert to Bitmap’ under the
illustration field.

Castume backdrop2 - & +- 14 t ¥
B . N B E @ s T
A E o
08
[~ JRY 1S5
RS X
& T
/ 0
o

o Bitmap]
Backpack o “

Digital-Travellers

Version of 7 December 2020

Digital
TRAVELLERS

Use the rectangle tool to
create a shape enveloping
the playing field, then fill it

with a green colour

&) convert to Bitmap Q = @

® Fill with green, then draw a black track using the paintbrush of maximum thickness. With a thinner
line of a different colour, draw a straight line corresponding to the arrival line.

Digital-Travellers Version of 7 December 2020

" 7 (=

Change colour and reduce
thickness for finish line

O \N ¢ r
O A ¢ »

® Delete the default cat sprite by click it and selecting the trashcan that appears over its selection
pane. Create a new sprite representing a car but choosing an image from the library (click the cat-
shaped sprite icon near the bottom right of the screen). Choose something small rather than
something long or pointed - it will be easier to program. Here we have chosen ‘Beetle’.

®* Rename the sprite ‘car’ by clicking on the name field.

Digital

TRAVELLERS

Sprite Car — x 78 I y 12

Show ® & Size 100 Direction 90

o

Select two events (blocks) from which the program will react.

From the ‘Events’ selection, drag/drop the following to the programming area

* A “when green flag is clicked’ block to start the game
* A ‘space key is clicked’ to make the car go forward

= Code &f Costumes \T) Sounds w

Motion

. ‘when clicked
Looks
. when clicked when space v key pressed

P when space v key pressed

20 ‘when this sprite clicked

vents

Control

O
Sensing '

‘when backdrop switches to backdropl +

Programming events to follow clicking the green flag - starting the game

Version of 7 December 2020

Digital-Travellers

Digital

TRAVELLERS

® Add a scaling block to set the initial size so that the size of the car is about one third that of the
circuit :

when clicked

set size to @ %

®* When you click the green flag, the program executes its instruction and changes the car’s size to
the given value.

* Drag/drop the car with the cursor to place it in front of the finish line, without it touching this line
nor the edges of the road. The sprite’s coordinates are displayed under the backdrop/playing field.
Note the car’s coordinates when you place it (e.g. x = -136, y= 144).

* We will now add a block that makes the car start at this position when the game starts, i.e. when
we click on the green flag.

® In the ‘motion’ category, we have the choice between the ‘go to x:__y: ' block and the ‘glide __
secs to x:__y: " block to move or glide the car to the starting coordinates.

* We will pick the second one.

® Add the ‘glide __ secs to x:__y: ' block after the scaling block added previously, then enter the
correct coordinates. They should be the same as the ones you noted before

Digital-Travellers Version of 7 December 2020

Digital
TRAVELLERS

when clicked

set size to @ %

*® If you have placed the car in the right position previously, the coordinates will be correct because
new blocks automatically take on the coordinates of the most recent placement.

® To test, place the car anywhere and click on the green flag. The car should return to the departure
point. Note 1: avoid explaining in detail how the coordination system works — you only need to let
participants know why the sprite goes to the right place. Note 2: you can also add an orientation
block so that the car points in the direction of the track (this avoids the outcome of the car
touching the edge due to being pointed to the wrong way).

Program events to follow ‘when space key pressed’ — moving the car

® Add an orientation block pointing towards the cursor
®* Add a movement block (move 4 steps)

Note : If the space key is held after the execution of these first two blocks, they will be executed again
since the space key is still pressed. Therefore, the car will move as long as the space key is pressed. We
will modify this in a future version.

Test the game and discuss what to do next :

® Return to the starting point if green is touched
®* Game ends when car touches blue (finishing line).

Digital-Travellers Version of 7 December 2020

Digital

TRAVELLERS

Complete the program to finish the car

Add a conditional control block: ‘if...then’

® Insert a ‘touching colour’ test and choose the correct colour using the eyedropper tool

® Inside the test block, duplicate the block that sends the car to the starting point. This block will
only be executed if the test’s condition is met (i.e. if the car is touching green).

* Duplicate the conditional block but use the finishing line’s colour.

® Inside this, place the block that displays ‘I won’, then add ‘stop all’

when space v key pressed

point towards mouse-pointer

move o steps

if touching color (

—,

")2 _ then
hS

glide ° secs to x: m y: @

if touching color . ? then
say m for o seconds

stop all =

Digital-Travellers Version of 7 December 2020

Digital

TRAVELLERS

e Reviewing main concepts

* Programming : we program to create something, like a game or application which is designed to
be useful. The most successful games are those for which whose creators really consider the
player’s experience and cater the game to that.

® A program is constructed using sequences of blocks which are triggered by an event. The
sequence of instructions corresponding to each event is called a script. Each sprite has its own
script (for example in what we did today, we wrote the car’s script). Programs can have many
sprites and corresponding scripts. It sometimes becomes difficult to remember them.

Digital-Travellers Version of 7 December 2020

Digital
TRAVELLERS

Control

Sensing

Operators

Variables

My Blocks

Digital-Travellers Version of 7 December 2020

* Block colours : these correspond to their functional categorie- Yellow for events which start

block sequences, for example when the player clicks on the green flag or presses the space
key.

- Orange for the control blocks which can be used to modify how the program runs. We used
one of these above: the ‘if...then’ clauses for which the internal instructions are only

executed if the conditions are verified/true

- Blue for motion blocks: movement and orientation.

- Purple for blocks that modify appearance, including size, colour and text bubble

- Magenta for sounds which we will use later

- Light blue for sensors, such as the block that senses when a particular colour is touched
- Green for calculations

- Orange for variables

- Red for custom blocks

®* The block shapes correspond to their character and the way they can be assembled.

© Most blocks have a notch on the top and underneath. We can lock them together in sequence
and are executed in order from top to bottom.

© Certain blocks are rounded on top meaning we cannot place anything before them. These
start each script and usually correspond to events which take place outside the program, for
example when the player clicks on the green flag. (We will see later that the program can
also generate events using messages).

© Certain block are flat on the bottom so nothing can be placed below them. This is the case
with the ‘stop __ ' block.

© There are also blocks that don’t have notches but are rounded or pointed on the edges.
These blocks contain a value that we can insert into other blocks. for example control
conditions.

© Pointed blocks can only represent one of two values, true or false. They correspond to that
we call Boolean variables. We usually use them in control blocks, for example, to determine
whether a certain condition is met

Digital
TRAVELLERS

if touching color . ? then

say m for o seconds

© Rounded block can contain numbers or text
® The values of rounded blocks can be a component in a calculation or test, for example:

® containing a false value
® containing the textual value ‘You lost’
® containing the value 7

on @ O

e Preparing the next steps

Discuss the game with participants and ways to improve it. As this will be there 1st their 2nd exercise on
Scratch, you shouldn’t allow them to go to free creation time, but you can base the next lessons on
improving the first version. We suggest the below ideas. We have categorised them in a suggested order
of complexity.

* Adding sounds

® Counting lives (ending the game when the car runs out of lives)
®* Changing the car’s speed, accelerating and decelerating

® Timing laps

® Choosing and changing cars

Digital-Travellers Version of 7 December 2020

Digital

TRAVELLERS

Adding obstacles

Attaching cars, throwing objects
Collecting fuel, running out of fuel
® Creating several levels

Digital-Travellers Version of 7 December 2020

